Niagara 2016 Symposium on Microgrids October 20-21, 2016 Niagara, Canada

Parallel Operation of Distributed Generators by Virtual Synchronous Generator Control in Microgrids

Jia Liu* and Toshifumi Ise Osaka University, Japan October 21, 2016

Contents

- Introduction
- Parallel Inverters
- Synchronous Generator + Inverter
- Conclusion

Contents

- Introduction
- Parallel Inverters
- Synchronous Generator + Inverter
- Conclusion

Inertial feature of Synchronous Generators

 $P_m - P_e$

OSAKA UNIVERSITY

Synchronous Generator

DC/AC Inverter

Frequency fluctuation

under active power transition limited by the inertia

 $W = \frac{1}{2}J\omega_m^2$ Kinetic Energy of Rotating Mass

 $\left(\frac{\mathrm{d}\omega_m}{\mathrm{d}t}\right) + D\left(\omega_m - \omega_g\right)$ Swing Equation P_m : Shaft power P_{ρ} : Output power ω_m : Rotor frequency ω_g : Grid frequency *I*: Moment of inertia D: Damping factor

No intrinsic relation

Frequency ω

Undesirable frequency dynamics

Concept of VSG Control

Smooth Transition Conventional Load Sharing between Islanding **Droop Control** and Grid-connection $P_{in} - P_{out} = J\omega_m \frac{d\omega_m}{dt} + D(\omega_m - \omega_g)$ **Swing Equation** Emulation **Inertia Support** A New Concept of **Virtual Synchronous Generator Inverter Control** (VSG) Control in AC Microgrid

- Two topics to be discussed
 - Parallel Inverters
 - Synchronous Generator + Inverter

What is the benefit?

DG1 Frequency, $\omega_{m1}^{}$ (pu) 0.98 VSG Without ----- Droop Frequency Slower frequency variation rate 0.96 **Restoration** 0.94 2 5 0 3 4 6 Time (s) **Frequency during** DG1 Frequency, ω_{m1} (pu) Loading transition 0.98 VSG With ----- Droop Frequency Less maximum frequency deviation 0.96 **Restoration** 0.94 0 2 3 5 4 6 Time (s) DG1 Frequency, ω_{m1} (pu) 1.04 Frequency during Three-phase VSG Less maximum frequency deviation 1.02 ----- Droop ground fault cleared in 0.1 s -0.5 0.5 1.5 0 2

Time (s)

Contents

- Introduction
- Parallel Inverters
- Synchronous Generator + Inverter
- Conclusion

Microgrid: Parallel Inverters

OSAKA UNIVERSITY

Fluctuated loading

VSG Control Scheme (Enhanced Part)

OSAKA UNIVERSITY

lout b

R_{line}

Stator Impedance Adjuster

- Constant part
 - Transient power sharing
 - Increased damping
- Transient part
 - Overcurrent limiting

Estimate bus voltage for proper reactive power sharing

 V_{line}_{β}

Control Parameters

SOSAKA UNIVERSITY

Parameter	Value	Parameter	Value
DG1 Power Rating S _{base1}	10 kVA	LPF cut-off Frequency T_{fpi}	$7.96 imes 10^{-3}$ s
DG2 Power Rating S _{base2}	5 kVA	LPF cut-off Frequency T_{fqi}	$7.96 imes 10^{-3} ext{ s}$
Nominal Voltage E_0	200 V	Q Ctrl. PI Gain $K^*_{pq\ i}$	0.0125 pu
Nominal Frequency ω_0	376.99 rad/s	Q Ctrl. PI Time Constant T_{iqi}	$1.25 imes 10^{-4} ext{ s}$
Inertia Constant M_i^*	8 s	Sec. Ctrl. PI Gain K^*_{psec}	1 pu
Damping Factor D_i^*	17 pu	Sec. Ctrl. PI Time Constant T_{isec}	0.05 s
Set Value of Active Power P_{0i}^* (default)	1 pu	DG1 Cont. Virtual Stator Reactor L _{ls01}	6.39 mH
Set Value of Reactive Power Q_{0i}^* (default)	0 pu	DG2 Cont. Virtual Stator Reactor L _{ls0 2}	13.81 mH
Active Power Droop Coef. $k_{p\ i}^*$	20 pu	Trans. Virtual Stator Imp. Gain k_{Zi}^*	1.79 pu
Reactive Power Droop Coef. k_{ai}^*	5 pu	Trans. Virtual Stator Imp. Ratio X/R_i	5

Simulation Results Loading Transition

Simulation Results Three-Phase Ground Fault

Fault Current During Three-Phase Ground Fault

SOSAKA UNIVERSITY

State-Space Model of Islanded Microgrid

SOSAKA UNIVERSITY

 The damping ratio of oscillation in output parameters is determined by the eigenvalues of state matrix A

Relation between Output Reactance and Damping Ratio

SOSAKA UNIVERSITY

Transient Load Sharing

- When the disturbance is a loading transition
 - If the total output reactance of each VSG is of the same per unit value, poles are cancelled by zeros and oscillation is eliminated

Design of Constant Stator Reactance

OSAKA UNIVERSITY

- How to design L_{ls0} to avoid oscillation? ٠
 - Large value to provide damping
 - Same total output reactance for all VSG in parallel ٠

$$X = X_{ls0} + X_f + X_{line} = 0.7 \text{pu}$$

 $(X_{ls0} = \omega_m L_{ls0})$

X: Total output reactance X_{Is} : Virtual stator reactance X_f : Filter reactance *X_{line}* : Line reactance

Cause of Poor Reactive Power Sharing

Bus Voltage Estimator for Proper Reactive Power Sharing

OSAKA UNIVERSITY

Estimate bus voltage for proper reactive power sharing

Contents

- Introduction
- Parallel Inverters
- Synchronous Generator + Inverter
- Conclusion

Microgrid: SG + Inverter

- Stand-alone microgrid in remote area
- SG (10 kVA): Round-rotor moved by gas engine
- DG (10 kVA): Photovoltaic panels
- Load: Three-phase loads and single-phase Loads

Issues of Small Rating SG

SOSAKA UNIVERSITY

SG Controller

SG Parameters

Parameter	Value	Parameter	Value			
Rated voltage E_0	200 V	Set value of active power $P_{0_sg}^*$	1 pu			
Rated power S _{base_sg}	10 kVA	Set value of reactive power $Q_{0_sg}^*$	0 pu			
Nominal frequency ω_0	376.99 rad/s	$\omega - P$ droop coefficient $k_{p_sg}^*$	20 pu			
Inertia constant M^*_{sg}	0.16 s	$V - Q$ droop coefficient $k_{p_sg}^*$	5 pu			
AVR PI K_{pAVR}^*	20 pu	Governor time constant T_{d_sg}	1 s.			
AVR PI T _{iAVR}	0.025 s	AVR LPF cut-off frequency	20 Hz			
Impedance Model						
$X_d^* = X_q^*$ 0.219 pu	$X'^*_d = X'^*_q$	0.027 pu $X''_{d}^{*} = X''_{q}^{*}$ 0.0	1 pu			
T'_{do} 6.55 s T''_{do}	, 0.039 s	$T'_{qo} = 0.85 \text{ s} T''_{qo} = 0.0$	071 s			

Slow governor response

Simulation of Single SG Operation

OSAKA UNIVERSITY

Control Requirements of DG

OSAKA UNIVERSITY

- 1. Reduce SG rotor frequency deviation
 - If SG rotor frequency drop below 90%, SG may be unstable
 - Virtual Synchronous Generator (VSG) Control
 - Generate virtual inertia to provide transient frequency support
 - Share active and reactive power with the SG
- 2. Eliminate Negative-Sequence Current from SG
 - Prevent SG from overheating and torsional stresses
 - Active power filter (APF)
- 3. Both 1+2 should be realized in ONE inverter

Proposed Modified VSG Control

- Applied to both DG and SG voltage and current to extract positive and negative sequence components
- Output power, voltage and current of DG are calculated from only positive sequence components
 - Prevent ripples due to negative sequence from entering the controller

$$\mathcal{P}_{out_dg} = \mathcal{v}_{out_dg_d}^+ i_{out_dg_d}^+ + \mathcal{v}_{out_dg_q}^+ i_{out_dg_}^+$$

$$Q_{out_dg} = -v_{out_dg_d}^+ i_{out_dg_q}^+ + v_{out_dg_q}^+ i_{out_dg_d}^+$$

$$V_{out_dg} = \sqrt{(v_{out_dg_d}^+)^2 + (v_{out_dg_q}^+)^2}$$

$$I_{out_dg} = \sqrt{(i_{out_dg_d}^+)^2 + (i_{out_dg_q}^+)^2}$$

DDSRF

Double Decoupled Synchronous Reference Frame (DDSRF) Decomposition

LPF: 1st order low pass filter (cut-off frequency 40 Hz)

SG Neg.-Seq. Compensation

OSAKA UNIVERSITY

Parameter Design of Inverter

OSAKA UNIVERSITY

Parameter	Value	Parameter	Value			
Rated voltage E ₀	200 V	Set value of active power $P_{0_dg}^*$	1 pu			
Rated power S _{base_dg}	10 kVA	Set value of reactive power $Q_{0_dg}^*$	0 pu			
Nominal frequency ω_0	376.99 rad/s	$\omega - P$ droop coefficient $k_{p_dg}^*$	20 pu			
Inertia constant M^*_{dg}	0.16 s	$V - Q$ droop coefficient $k_{q_dg}^*$	5 pu			
Damping factor D_{dg}^*	8.7 pu	Governor time constant T_{d_dg}	0 s			
Constant virtual stator inductance L_{ls0}	1.122 mH	Transient virtual stator impedance gain k_Z^*	0.69 pu			
SG output reactor L_{ad_sg}	1.836 mH	Transient virtual stator impedance X/R ratio	5			
PI Controller for Reactive Power						
K_{pq}^{*}	0.05 pu	T_{iq}	1.25×10^{-2} s			
PI Controller for SG NegSeq. Compensation						
$K_{p_neg}^*$	0.1 pu	T_{i_neg}	0.01 s			
Cut-	20 Hz					

All parameters in red should be set equal to SG in per unit value to ensure proper transient and steady power sharing

Design of Parameters in blue will be discussed in detail

Governor Time Constant T_{d_dg}

SOSAKA UNIVERSITY

Set equal to SG in order to share transient active power?

Constant Virtual Stator Inductance

Output reactance of DG and SG should be set equal to share transient power, but how about the value?

Connection of DG

Realized by tuning virtual stator inductance L_{ls0} for DG and adding an additional output reactor $L_{ad sg}$ for SG

Simulation of 1P Loading Transition

Simulation of 1P Loading Transition

Phase Current

DG Current (A) 20 0 -20 -40 -60 30 w/o DDSRF and iout sg b iout sg c *iout* sg a iout dg iout_dg_b iout dg c SG Current (A) SG Neg. Seq. 20 10 -20 -30∟ 29.9 29.94 29.96 Time (s) 29.92 29.98 30 60 DG Current (A) 40 20 0 -20 -40 with DDSRF and -60 30 iout sg_b_iout sg_c___iout_dg_a dg b lout sg a İóut lout dg c SG Neg. Seq. **Balanced SG current** -30∟ 29.9 29.94 Time (s) 29.92 29.96 29.98 30

60

40

Contents

- Introduction
- Parallel Inverters
- Synchronous Generator + Inverter
- Conclusion

Conclusion

Conclusion

- VSG control can provide inertia support for microgrids, leading to less fluctuant frequency
- Parallel inverters and SG + inverter operations were established, and several related issues were solved

Future Plan

• Operation of Multiple SGs + Multiple inverters

Thank you for your kind attention!

For more details, please refer to:

- J. Liu, Y. Miura, H. Bevrani, and T. Ise, "Enhanced virtual synchronous generator control for parallel inverters in microgrids," *IEEE Transactions on Smart Grid.*, doi: 10.1109/TSG.2016.2521405.
- J. Liu, Y. Miura, T. Ise, J. Yoshizawa, and K. Watanabe, "Parallel operation of a synchronous generator and a virtual synchronous generator under unbalanced loading condition in microgrids," *8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)*, Hefei, China, 2016, pp. 3741-3748.
- J. Liu, Y. Miura, and T. Ise, "Power quality improvement of microgrids by virtual synchronous generator control," *10th Electric Power Quality and Supply Reliability Conference (PQ2016)*, Tallinn, Estonia, 2016.